首页 > 分科学习 > 哲学 > 精品文章 > 逻辑学 > 

逻辑究竟是什么以及逻辑应当是什么?

2016-12-29 17:55:23 《哲学分析》2016年第2期 郝兆宽

哥德尔主义者则会把ZFC看作是对那个客观的集合宇宙V的一个并不完备的描述。由于ZFC的公理都是直观上明显的,所以每个ZFC的定理都是有关集合宇宙的一个真命题。但反过来却不成立,不是每个有关集合的真语句都是ZFC的定理,CH即是一个典型的例子。作为一个清晰明白的集合论语句,CH在V中一定有一个真值,或者它为真或者它的否定为真。ZFC不能证明这一点不是说明CH是无意义的,而是说明我们对集合概念的那些总结在ZFC中的认识还太模糊,而集合论研究的一个根本任务就是寻求新的公理以加强ZFC,从而确定像CH这样的命题的真值。

……基于此处采取的立场,从已接受的集合论公理出发,一个有关康托猜想的不可判定性的证明(与一个对π的超超性的证明完全不同)决不是问题的解决。……集合论概念和定理描述了一个完全确定的实在,在其中康托猜想一定是或真或假。因此,源于今天已接受公理的对它的不可判定性,只能意味着这些公理没有完备地描述那个实在。这一信念绝非空想,因为有可能指出一些方向,在其中能得到对一些问题的判定,而这些问题对于通常的公理是不可判定的。(43)

在具体的研究中,形式主义者更看重通过力迫法所获得的那些独立性结果。这种方法是科恩在证明自己的定理时发明的,而且几乎立刻就表现出强大的力量。例如,按照这种方法,我们从ZFC(甚至可以在其中加入更强有力的假设,如存在一个大基数)的一个模型A出发,总能构造出A的两个[脱殊(generic)]扩张模型M和N,ZFC的公理在M、N中都还是真的,但连续统假设在M中为真而在N中为假,也就是说模型A上总存在着这样的分叉模型。众多的独立性结果使得集合的世界看起来很无序,而且站在形式主义的立场上看,每个独立性命题都是一个人类对其毫无所知的命题。[当然,除了知道我们对其无知这一点。希拉(Shealah)曾说,证明人类的无知也是一种荣耀。(44)]

哥德尔主义者也赞叹力迫法的神妙,一个命题是独立的,这也是有关集合概念的一个事实。只是在他看来,这个事实是在提醒我们对集合概念的理解是多么贫乏,我们多么需要丰富我们对这个客观世界的知识,多么需要寻找新的公理来确定这些独立命题的真值。

有一个确立像CH这种独立命题真值的策略,它基于以下观察:存在这样的模型M,“一个语句在M中为真”这个事实对力迫法是“免疫的”。具体说,假设还是从模型A出发,如果“语句S在M中为真”这句话本身在A中为真,则“语句S在M中为真”这句话在A的所有脱殊扩张中都真。实际上,一阶算术结构就是这样的模型:

重要的是,不论科恩的扩张方法还是哥德尔的限制方法都不能影响算术命题在算术结构中的真,因此对存在一个真正的数论模型的直观尚未受到挑战。(45)

我们把这种性质称为“脱殊不变性”。伍丁(Hugh Woodin)发现,如果假设适当的大基数,二阶算术的结构也是脱殊不变的,因此在这样的假设下,我们不能改变一个命题在二阶算术结构中的真。

由于CH是一个三阶算术的命题,所以按照这个策略,只要再进一步,找到使得三阶算术结构也是脱殊不变的那些假设,我们就能固定CH在三阶算术结构中的真值,从而“解决”连续统问题。(46)

这个研究策略被称为“局部”策略,因为即使进展到三阶算术,也只是触及集合宇宙的一个很低的层阶;即使固定了CH的真值,对于整个集合宇宙的认识也还是处于茫然之中。

另外一个策略是“全局”的,它看起来更为激动人心,也更接近哥德尔对作为逻辑一部分的集合论的理解。这个策略始于所谓的内模型计划。

假设V是真实的集合宇宙,我们目前对它的认识模糊不清。所以集合论学家的一个主要任务是考察:V到底是一个什么样的结构。哥德尔在1938年的证明中,提出了一个集合论模型L,L的结构十分清晰,而且包括CH在内的那些独立性命题在L中都有一个确定的答案。因此我们就有理由猜想,L是否就是我们寻找的那个客观的集合论宇宙呢?如果是,即如果V=L,则我们就达到了对集合概念的清晰认识。但L有一个致命的弱点使其不可能成为V的候选:它不能容纳大基数。

所谓内模型计划就是:构造类似于L的模型,同时能够容纳大基数。这可以说是当代集合论最为艰深的部分,每次向一个更大的基数的迈进都是一个艰难的旅程。但是伍丁最近的一个非常出人意料的发现,使得内模型计划来到了一个关键的时刻。在[16]中,伍丁证明,如果存在一个类似于L的模型M,它能容纳一个超紧基数,那就存在一个模型U:(1)U可以容纳已知的所有大基数;(2)U非常接近集合论宇宙V。伍丁自己将这个模型U称为终极L。

如果集合论宇宙真的就是这个终极L,那么,连续统假设就是真的。而且,所有通过力迫证明其为独立的那些命题都能够在大基数假设下获得一个确定的真值。这就意味着我们“终结了(力迫的)独立性时代”。

必须承认,由于尚未获得容纳一个超紧基数的内模型,所以终极L的设想还远未达到实现的程度。实际上,有很多逻辑学家甚至怀疑超紧基数的一致性,怀疑我们最终能找到它的内模型。

但是,这些困难和问题不是我们关心的要点。无论终极L的设想最终能否成功,它都至少表明:哥德尔的观念,即作为逻辑学一部分的集合论不是一门纯形式的科学,而是对某个客观实在的描述,在实际的逻辑研究中确实发挥着作用。如果没有这个信念,这些重要的结果就不可能获得,因为在形式主义的逻辑观念下这些问题根本不会被提出,更不用说去寻求它们的解答了。

【注释】

①其实,脱离空间的运动也是难以想象的。但似乎我们可以考虑完全精神的变化,它们必须在时间中展开,但却不能确定其在空间中的轨迹。

②多见George Boolos,Logic,Logic,and Logic,edited by Richard Jeffrey,Cambridge:Harvard University Press,p.302。

③参见Goldfarb,"Frege's Conception of Logic",in The Analytic Tradition in Twentieth-Century Philosophy,edited by Juliet Floyd and Sanford Shieh,Oxford University Press,2001,p.25。

④Ibid.,p.39.

⑤参见MacFarlane,What Does It Mean To Say That Logic Is Formal? Ph.D.diss.,University of Pittsburgh,2000,以及Frege,Kant,and the Logic in Logicism,The Philosophical Review,Vol.111,No.1,2002。

⑥郝兆宽:《论分析性》,载《哲学研究》,2014年12期。

⑦这实际是确定量词、的论域,这个论域也就是对这个语句所处的形式语言进行解释的那个结构的论域。这让我们想起了蒯因的名言:“存在就是量词的变域。”

⑧这是布罗门塔尔(Otto Blumenthal)讲述的故事,发生在1891年于柏林火车站的一次讨论中。参见夏皮罗:《数学哲学——对数学的思考》,郝兆宽、杨睿之译,上海:复旦大学出版社2012年版,第147页。

⑨参见MacFarlane,What Does It Mean To Say That Logic Is Formal? p.33。

⑩有关逻辑真和逻辑后承的概念可参见郝兆宽、杨跃、杨睿之:《数理逻辑——证明及其界限》,上海:复旦大学出版社2014年版,第89-93页。

(11)Carnap,Introduction to Semantics,Cambridge,MA:Harvard University Press,1942,p.32,转引自MacFarlane,What Does It Mean To Say That Logic Is Formal?

(12)Alfred Tarski,Introduction to Logic and to the Methodology of Deductive Sciences,New York:Oxford University Press,1946,p.128.中译本《逻辑与演绎科学方法论导论》,北京:商务印书馆1963年版,第124页。

(13)参见Goldfarb,Frege's Conception of Logic,p.27。

(14)康德:《纯粹理性批判》,BIX,根据的是邓晓芒的译本(康德:《纯粹理性批判》,邓晓芒译、杨祖陶校,北京:人民出版社2001年版)。下同,我们只注明页码。

(15)弗雷格在《算术基础》中明确断言,要始终将心理的与逻辑的、主观的和客观的严格区分开来。参见Frege,The Foundations of Arithmetic,translated by J.L.Austin,Oxford:Basil Blackwell Publisher,1980,p.X。

(16)参见Goldfarb,Frege's Conception of Logic,p.27。

(17)Frege,The Foundations of Arithmetic,§14.

(18)MacFarlane,Frege,Kant,and the Logic in Logicism,pp.49-53.

(19)我们这里没有涉及这个原则的来源。如果把这个原则归于当代科学,特别是物理学所强烈暗示的事实,那这样的物理主义会自认为是自然主义。

(20)所以经验主义者、物理主义者也可以是一个逻辑主义者。但要说明数学是纯形式的比要说明逻辑的纯形式性困难很多。当然,物理主义者还有其他选择,即把逻辑和数学视为间接地关于物理世界的,或者是人类大脑的某种能力的体现。

(21)不仅如此,麦克法兰还对逻辑是纯形式的这一观念做了历史的考察,得出的结论是,在康德之前,它并不是流行的看法,更谈不上固有的逻辑观念。例如,对于莱布尼茨来说,逻辑就是一门真正的科学,而不仅仅是形式的。他所理解的逻辑,不仅仅是对已经提出的命题做出评判,而且还是发现那些隐蔽的真理的手段,所以从这个意义上说,真正的形而上学与真正的逻辑很难区分开来。(莱布尼茨著作全集德文版,第四卷。这里全部转引自MacFarlane,What Does IT Mean To Say That Logic Is Formal?)

(22)参见Gdel,"The Modern Development of the Foundations of Mathematics in the Light of Philosophy",in Collected Works,Vol.III,Unpublished Essays and Lectures,edited by S.Feferman,et al.,Oxford:Oxford University Press,p.375。

(23)参见Frege,The Foundations of Arithmetic,§89。

分享到:
  • 欢迎,   已有0条评论
最新评论

学习网首页
思想理论
资    政
学习中国
党史党建
企业天地
科学技术
海外风采
综合专题
理论百科
干部论坛