首页 > 分科学习 > 哲学 > 精品文章 > 逻辑学 > 

逻辑究竟是什么以及逻辑应当是什么?

2016-12-29 17:55:23 《哲学分析》2016年第2期 郝兆宽

因此S的真也取决于它所陈述的那个具体的经验事实。将以上断言联合起来就必然会得到:一个逻辑语句没有任何语义内容,因此是纯形式的。

事实上,对于经验论者,包括当代的物理主义者,主要的担心是对那些非时空对象的本体论承诺,从而不愿意接受我们会有任何关于非物理对象的客观知识。在这个最高原则下(19),他们当然只能把逻辑处理为纯形式的,并把数学处理为与逻辑一样,也是形式(句法)的。(20)

麦克法兰的这个发现极为重要,它从哲学上令人信服地说明,当前对逻辑的主流观念,并非如人们相信的那样,是一个与立场无涉的中立框架,是逻辑这门科学本性使然的客观结果。(21)相反,它是以某种流行的哲学为基础的。借用哥德尔的术语,这种关于逻辑的纯形式观念是整个哲学“左转”,即越来越屈服于物理主义的结果。(22)

同时,这一论证正好说明当代分析传统的逻辑观念为何更接近康德而不是被称为“分析哲学之父”的弗雷格。因为弗雷格不是一个经验论者,更不是现代意义上的物理主义者,他明确拒绝了一切对象必须通过感性被给予的观点:“我还必须反对康德以下断言的普遍性:离开感性,我们不能有任何概念被给予。零和一就不是能通过感性被给予的对象。”(23)

因此也就不必像经验论者那样,在强调逻辑的普遍性的同时必须接受逻辑是纯形式的。在这里我们还希望强调一个众所周知的事实,即弗雷格反复强调自然数是“独立而非现实的”“自我持存的对象”。(24)所以,如果S是一个算术语句,按照逻辑主义的观点,S也是逻辑语句,因此是普遍的。同时,S是关于自然数的,陈述了关于自然数世界的事实,所以它不是空洞的纯形式。

再次,对于弗雷格来说,作为一门具有实质性内容的科学,逻辑学是描述性的,而不是规范性的,更不是思想的形式。在他看来,逻辑之所以看起来“规定”了我们如何思考的原则,是因为我们的思想是关于实在的,如果一门科学确定地描述了现实的客观规律,那我们的思想就不可避免地要遵循这些规律。在这个意义上,任何描述性的科学,不管是物理学还是几何学,都规范着我们的思想,只是程度不同而已。如果我们思考物理对象,那就必须遵循已知的物理学规律,离开这些规律,例如设想一个人左脚踩着右脚向上爬,或者向山上流的水,那被思想的就不再是物理对象,物理规律也就不再左右你的思想。如果更进一步,还可设想一个三角形,它的内角之和不是180°,只要把这个三角形从平面放到一个球面上,此时你所思考的,已经不是欧氏几何的对象,欧氏几何的规律也不再对你有效。当然,此时你还是必须遵循非欧几何的那些定律。

将这个过程进行下去,我们能否设想一个不等于自身的对象呢?或者一个不能用数去数的东西呢?弗雷格认为这是不可能的,因为这与一些最为基本的规律相违背,这些规律是所有“能被思考的”对象都必须遵守的,这就是逻辑规律。

所以,作为一门描述性的科学,逻辑对思想的影响并不是因为它与思维有着什么特殊的关系。如果一定要认为逻辑是有关思维规则的科学,那同样可以说物理学、几何学也是如此。真正让逻辑显得特殊的是它的普遍性,我们可以思考非物理的对象,甚至思考非欧几何的对象,但不能思考非逻辑的,即不能思想的对象。

麦克法兰注意到了弗雷格对逻辑规律这两种解读的不同态度:是作为描述性的普遍逻辑规律决定了它们对思想也是规范性的,但是似乎又认为这两种解读可以分离开来,成为平行的两个向度。但是我们非常怀疑弗雷格会接受这样的解读,因为他始终强调,真是一回事,对真的把握是另一回事。麦克法兰需要谨慎处理的另一个问题是,弗雷格的思想很可能与康德所说的思想不是同一个概念。(25)

总结起来,在当代思想中有两种逻辑的观念有着广泛影响,一种认为逻辑是形式的,与对象和事实无涉,逻辑命题对现实世界无所言说。一种认为逻辑是普遍的,但有自己的对象和内容,对实在有所言说,而且那些逻辑命题是所有可思想的对象都必须遵守的。

我们还论证说,这两种逻辑观念的背后是两种哲学立场的分歧,这就是当代数学哲学中的物理主义和实在论立场。有一点微妙的是,在物理主义哲学前提下,逻辑的普遍性意味着它是形式的,而物理主义哲学又是我们时代的主流思想,所以这两种逻辑观念的区分不是很引人注目。但它还是没有逃过那些敏锐的思想者的视线。

二、哥德尔的逻辑观

“哥德尔的逻辑构想,是弗雷格所设想的逻辑观念的自然的发展。”(26)如果这是对的,那至少说明,弗雷格的逻辑观念,虽然与主流哲学的把逻辑视为纯形式的相矛盾,但并不是一个孤立的立场。相反,由于哥德尔与弗雷格一样,致力于为数学奠定一个牢靠的基础,这种立场在数学基础研究中的影响非但不像其在分析哲学中的那样逐渐消退,反而是日益地得到加强。

为了证明这个论题,我们希望说明:(1)与弗雷格一样,哥德尔认为逻辑学是一门描述性的科学,它有自身的研究对象,这些对象是客观世界的一部分,而且不是属于物理,或者说感官可以知觉的那一部分。(2)逻辑和数学命题的本性仍然是分析的,无须借助康德意义上的直观而认识它们。(3)哥德尔是弗雷格意义上的一位逻辑主义者,即,他也同意数学可以建立在上述意义的逻辑之上。

这最后一点并不是必需的,因为这不是弗雷格逻辑观念的必然结论。但这个额外的收获却与当代数学基础的研究密切相关。正如我们稍后将会看到的,弗雷格逻辑主义的所谓“失败”被深深地误解了,而且由于不能超出这种误解,当代的新弗雷格主义者不可能是“真正的”弗雷格主义者。即使我们真的能证明休谟原则的逻辑命题的地位,也不能完成弗雷格将全部数学置于逻辑之上的宏大目标。

在已发表的著作中,哥德尔对逻辑观念的论述不多,且比较零散,最为明确的一次是在1944年的《罗素的数理逻辑》中:

数理逻辑无非是形式逻辑的精确的与完全的表述,它有着相当不同的两种面貌。一方面,它是数学的一个部门,处理类、关系、符号的组合等等,而不是数、函数、几何图形等等。另一方面,它是先于其他科学的一门科学,包含着所有科学底部的那些思想和原则。(27)

除此之外,王浩记录了他在1975年的一段更为清楚的表述:

逻辑是关于形式的东西的理论。它包括集合论和概念论。初等(或谓词)逻辑、非初等逻辑和集合论之间的区别主要是主观的区别。主观的区别依赖于心灵特殊的情形。形式的东西与心灵无关。因此,什么是逻辑是一个客观的问题。客观的逻辑蕴涵是范畴性的。初等逻辑是有穷心灵的逻辑。你若是有无穷的心灵,你便有了集合论。比如,一万个元素的有穷论域上的集合论就是初等逻辑的一部分。请比较我的罗素篇。(28)

我们首先要面临一个琐碎而恼人的问题,即哥德尔也使用“形式的”一词。好在王浩对此做了明确的断言:“对哥德尔而言,逻辑处理形式的——意思是普遍可应用的——概念。从这个角度看,数、集合和概念都是形式的概念。”(29)形容词“形式的”修饰概念,那才是逻辑的对象,而且形式的只不过是普遍的另一种表述而已。这正与弗雷格所说的相一致。

这两段论述有所差别,反映了哥德尔思想在30年中的变化。但我们也有理由相信,它们所表达的基本立场是一致的。

首先可以确定的是,对哥德尔来说集合论是逻辑的一部分。1944年的表述中,第二方面所指的显然是谓词逻辑(30),因为他随后提到,正是在这个方面,先是莱布尼茨设想,然后由弗雷格实现了。可是,要想说明第一个方面指的是(至少包括)集合论,我们必须首先搞清“类”与概念以及集合的关系。

根据王浩的报告,哥德尔对类的理解经历了一个深刻的变化。在1944年的表述中,哥德尔把类理解为与概念同样基本的东西:“类和概念也可以被设想为实在的对象,就是说,类可以被设想为‘事物之复多’或由多数事物组成的结构,而概念可以被设想为独立于我们的定义和构造而存在的事物的性质和关系。”这样一个类的概念是包含集合在内的,每个集合都是一个类,但有些类,例如“所有集合”构成的类,不是集合,否则就会出现罗素悖论那样的矛盾。这样,“处理类、关系、符号的组合等等”的数学部门就至少包含集合论在内。从另一个方面也可以证实这种看法,哥德尔在构造他的L来证明连续统假设的一致性时,使用了NBG系统而不是通常的ZF,而在NBG中,初始的对象有两种——类与集合。这当然有技术上的考虑[如索洛维(Solovay)和库能(Kunen)所指出的],但同样也可能有哲学上的原因,如帕森斯所说的:“这一观点(即集合的性质对于集合论来说是初始的)可能反映在哥德尔(在其证明连续统假设一致性的论文中)选用带有类变元的框架这一点上。”(31)

第二个需要解释的问题是,谓词逻辑显然可以用“纯形式”的观点加以解释,而集合论则显然不能,是什么样的内在联系使这两者包含于同一门学科中?1975年的表述给出了这样的暗示:它们之间的区别仅仅是“主观的”,是由于心灵的能力不同而造成的。在哥德尔看来,经验主义者把逻辑的作用限制于推理,限制于从一些命题过渡到另一些命题,而不是去陈述命题。因此,在这种限制下,可以用“直接关涉有穷心灵的推理的形式显明性来定义逻辑”,这的确可以涵盖谓词逻辑的部分,而且他自己的谓词逻辑的完全性定理肯定了形式推理对经验主义的这种逻辑观念的充分性。

但哥德尔同时指出,如果逻辑仅仅是推理规则而不是描述命题,那量词的引入就不是必须的:“我们引进量词是因为语言是关于什么东西的——我们把命题看成是谈论对象的。我们若不谈论对象,量词就不是必要的,但我们无法想象这点。”而另一方面,“对于无穷的心灵来说,集合论公理也是推理规则”(32)。可这是什么意思呢?

首先,初等逻辑和数学是集合论的某种“限制”。如上引文所说的,把集合论限制在一个有穷的论域上,它就是一阶谓词逻辑的一部分;限制在一个可数的论域上,它就相当于一阶算术理论。另一方面,集合论也可以被看作是有穷推理规则的推广:

如果一个人不考虑有穷和无穷在这方面的区别,那么就存在一种更简单的同时也是更深刻的对集合论(由此也是对数学的)的解释。即,在个体数量有穷的情况下,罗素的纲要,即关于类的命题可以被解释为关于它们的元素的命题,就成为显而易见地真的了。……当然,通过对这种过程的迭代,我们可以得到类的类,等等,这样得到的逻辑系统就像简单类型论,只是这种情况下类型的混合会是可能的了。这样,公理化集合论就成为这种模式在无穷个体或集合构造过程的无穷迭代情况下的推广。(33)

1944年的表述中没有直接提到“概念”作为逻辑的对象,更没有明确把概念论作为逻辑的一个部分。但我们有理由相信,1944年表述中的类既包括集合(以上论述已经明确了这一点),也间接涉及了概念。综合1975年表述和王浩的解读,我们猜想大致的图景是这样的:首先,类是概念的“适域”,每个概念对应着一个类,如果这个类恰好是集合,则它就是这个概念的外延。罗素悖论告诉我们,并非每个概念都有外延。其次,哥德尔对类的理解经历了一个重大变化。在他的早期,作为概念的适域的类和概念本身是一样实在的客观实体。但是最迟在1975年,哥德尔开始认为那些不是集合的类(真类)是不真实的对象,它自身什么也不是。它不过是一种派生的、混杂的便利手段,是为了便利地谈论概念的某些方面而引进的,它不能被当作单个的对象。

在整个1944年的表述中,哥德尔几乎总是把类和概念并举,并提出“建立一种关于作为客观存在实体的类和概念的一致理论”的设想,甚至认为“这是数理逻辑的现实发展所采取的道路,也是罗素自己在其工作更有建设性的部分所不得不进入的道路”。这说明,在早期,哥德尔把关于类的理论与概念论视为平行的理论,前者涵盖了集合论,对应于概念论中那些其适域是集合的部分。

但是,后期的哥德尔不再相信“内涵的”和“外延的”东西是完全对应的,可以类比的。类是从外延的角度对概念的理解。但是,一方面,不同的概念可以有相同的适域,即对应同一个类,例如分数这个概念和有理数这个概念。另一方面,我们并不总是清楚某个类对应的那个概念的内涵,例如,V。所以,如果类不能唯一地确定概念,也不能帮助澄清概念的内涵,那类的理论就不再与概念论平行。又因为从外延上讲类是不一致的(罗素悖论),所以离开概念论的类不能成为真正的对象。内涵和外延的不对称,成为哥德尔放弃把类视为真实对象的根本原因。

集合论取代类的理论,代表了从外延角度对概念的理解,但它从根本上不再是与概念论平行的理论。一方面,与类一样,同一集合可能对应着不同的概念,所以类似于外延公理的东西在概念论中可能不成立;另一方面,哥德尔甚至设想,可能有这样的集合,它不对应任何的概念。虽然他认为,一个完备的集合论和一个完备的概念论合在一起能够证明每个集合都对应着一个概念,但这并不是一个显然的事实。

这一切导致了建立一个概念论的必要性,也成为哥德尔所认为的逻辑学的一个核心任务,这是哥德尔晚年思想的一个重要方面。可惜的是,虽然集合论远非完备,但至少有了一个合理的公理系统,而且这个系统对建立绝大部分数学也是足够的。与之相比,哥德尔对概念论的设想还只是一个模糊的雏形,甚至连一条明确的公理都不能确定。不过哥德尔也多次暗示,这样的概念理论一旦建立,会给我们带来丰富的成果。例如,司寇仑发现,每个自然数理论都存在一个非标准模型,如果我们只有外延的手段,这是一个麻烦。但如果能有一个像样的概念论,问题就不存在了,我们总还是只有一个自然数的概念。

无论如何,以上有关哥德尔逻辑观念的讨论足以说明(1),即,与弗雷格一样,哥德尔不认为逻辑是纯粹的形式,集合论包含在逻辑之中。

分享到:
  • 欢迎,   已有0条评论
最新评论

学习网首页
思想理论
资    政
学习中国
党史党建
企业天地
科学技术
海外风采
综合专题
理论百科
干部论坛