首页 > 分科学习 > 哲学 > 精品文章 > 逻辑学 > 

逻辑究竟是什么以及逻辑应当是什么?

2016-12-29 17:55:23 《哲学分析》2016年第2期 郝兆宽

一、逻辑是纯形式的吗?

逻辑学是一门关于“形式”的学科,这一点似乎毫无疑问。但“形式的”指的是什么却颇有争议。例如,有一种普遍的误解认为形式就意味着符号化,但显然人类的任何语言都是一种符号。

现代最为通常的观点认为,逻辑之所以是形式的,是因为它的语言是由纯粹的符号构成的,在未经解释以前,它的词项不实际地指称任何对象,因此它的语句也没有真假。例如以下语句:

在任何两个自然数之间总存在另一个自然数。(1)

这是一个有明确意义的句子,而且是假的。我们可以使用逻辑的语言将其概括为:

而这个形式的逻辑语句则只是一个纯粹的(根据一定句法规则形成的)符号串。我们必须确定、以及<的意义后才能使其成为一个具有真值的语句。例如,我们如果将、理解为“对所有的自然数”和“存在一个自然数”⑦,而把<理解为自然数上的小于关系,则这个形式语句就表达了语句(1),而且在这个解释下是假的。而如果将、理解为“对所有的有理数”和“存在一个有理数”,而把<理解为有理数上的小于关系,则这个形式语句就表达了语句(3),

在任何两个有理数之间总存在另一个有理数。(3)

而且在这个解释下(3)是真的。

在这一点上,最著名的是希尔伯特对“形式几何”的解释:“你总是可以用桌子、椅子和啤酒杯来代替点、线和面。”⑧

有人指出,这个意义上的形式化并不足以把逻辑与其他学科区分开来⑨,因为几何学、力学,甚至经济学都可以在这个意义上被形式化。我们从某一具体科学出发,总结出它的那些基本原理,然后用上述形式化的方法将这些原理概括到一个形式的公理系统中。此后我们可以忘掉最初的那些直观,而断言所有满足这个形式公理系统的结构,不管是由点、线、面还是由桌子、椅子、啤酒杯构成的,都可以称为“几何”对象。因此,这种形式只不过是一种形式化方法,它可以应用到逻辑,也可以应用到数学,甚至任何科学中去。

但是,逻辑在这种形式化中显然有着最为独特的地位,事实上,把逻辑视为“形式”的那些立场正是通过这种形式化被刻画的。从任何一个具体科学得到的形式公理系统只能在某些解释下为真,在另一些解释下为假,例如以上语句(2)。再比如,可以构造一个结构使得由欧氏几何得到的形式系统中的平行公理为假,这就是非欧几何。但是有些语句,例如则在任何解释下都为真!这类语句就是通常所说的逻辑语句。更为重要的是,在任何一个形式的公理系统中,当我们从一些命题通过推理得到另一些命题时,必须保证它们具有被称为“逻辑后承”的关系,按照塔斯基,这个关系定义为:

语句A逻辑蕴涵语句B当且仅当没有一个解释使得A为真而B为假。

在任何解释下都真的这类语句以及语句间的这类关系被称为“逻辑形式”,它们被认为是逻辑学的主题,逻辑在这个意义上是形式的。⑩

这种观点在当代哲学中毫无疑问占据着主导地位,而且相当广泛,为众多具有不同哲学立场的哲学家所共有,例如,经验论者卡尔纳普:

一个理论,一个规则,一个定义,或者类似的东西被称为形式的,如果在其中既不涉及符号(如单词)的意义,也不涉及表达式(如句子)的含义,而仅仅单纯涉及构成表达式的符号的种类和顺序。(11)

实在论者塔斯基:

……在构造一个演绎理论时,我们忽略公理的意义而只考虑它们的形式。正是由于这个原因,人们在提到这些现象时,他们说的就是演绎科学和这些科学中的所有推理的纯形式特征。(12)

戈德法布:

逻辑处理逻辑形式,后者将语句的主题内容模式化掉。因此逻辑与任何特殊的主题都没有关系,因为它处理的是这些“空洞的”形式,而不是特殊的内容。(13)

另一种关于形式的解说源自康德,他把普遍的逻辑理解为有关思维的形式规则的科学:

逻辑学的界限已经有完全精确的规定,它是一门仅仅详尽地阐明和严格地证明一切思维的形式规则的科学。(14)

这一规定性使得逻辑学必须抽掉一切认识内容,只有这样才能成为纯形式的。……(逻辑)抽掉知识的一切对象和差别,因而在其中知性除了和自身及其形式之外,不要和任何别的东西打交道。(BIX)

普遍的逻辑抽掉了知识的一切内容,也就是说,抽掉知识与客体的一切关系,仅仅在知识的相互关系中考察逻辑形式,即一般的思维形式。(A55/B79)

这样规定的逻辑只能“作为入门而构成各门科学的初阶”,可以当作评判知识的前期手段,但不能真正能通过逻辑学获取知识:

这虽然是一切真理的必要条件,因而是消极的条件,但更远的地方这种逻辑就达不到了,它没有什么测试手段可以揭示那并非形式上的而是内容上的错误。……但由于单是知识的形式不论它与逻辑的规律多么一致,也远远不足以因此就断定知识的质料上(客观上)的真理性,所以没有人敢于单凭逻辑就对对象作出判断,或是以任何方式对此有所主张……(A59-60/B84-85)

这两种有关形式的理解本质上非常接近。“排除知识的一切对象和差别”不正是说逻辑语言的那些符号在未经解释以前不指称任何对象,并且那些被称为逻辑形式的命题在任何解释下(或者说对任何对象)都真吗?不过它们之间也有明显的差别。康德强调逻辑是关于“思维的形式规则”的科学,而前一种既不肯定逻辑是有关思维的,也不确定逻辑是关于规则的科学。这种联系和区别反映了两个不同时代对逻辑的不同理解。20世纪的分析哲学传统一方面继承了康德认为逻辑必须在排除知识的一切对象的意义上是形式的,另一方面受弗雷格的影响,将心理的因素排除在逻辑之外(15),从而拒绝把逻辑视为思维的规则。但他们似乎走得并不很远,在脱离思维以后,逻辑似乎又成为与语言的句法类似的某种东西。

一个非常重要、也非常有趣,同时又尚未引起足够注意的事实是,现代逻辑的奠基人弗雷格有着与上述两种观念完全不同的逻辑概念。首先,他不认为逻辑是未经解释的符号体系。在弗雷格看来,逻辑中根本不需要“解释”一词,因为逻辑的语句也都是表达思想的,而如果这种表达是准确的,则不容许任何不同的解释。(16)

其次,对于弗雷格来说,逻辑是一门科学,是一组真语句的集合,就像任何其他科学一样。它与其他科学的唯一区别就在于它是最为“普遍的科学”。物理学是关于物理对象的,这些对象我们可以感觉到;几何学是关于几何图形的,这些对象我们可以直观到。而逻辑学的真理则普遍适用于任何“可思想的对象”,包括那些不能感觉、不能直观,甚至不能想象的对象。我们可以设想一个揪着自己的头发把自己从沼泽中拔出来的人,但在无论多么大胆、多么新奇的想象中,其中的对象和人物都还是遵循了几何学的公理。所以几何学真理比物理学真理更为普遍。但是,至少在思想中,我们可以思考多维的甚至无穷维的空间(虽然对这些可能没有任何的直观),可以思考曲面上的几何学。但对于算术真理(按照弗雷格的逻辑主义,因此也是逻辑真理),我们不能在任何情况下假设它们是假的,因为那样的话,思考就已经是不可能的了:

我们此处仅仅试图否定其中的任何一个,就完全陷入了混乱,思考似乎根本不再可能。算术的基础似乎比任何经验科学都来得深刻,甚至比几何学还要深。算术真理统治着那些可计数的东西。这是最为广泛的领域,因为它不仅包括现实的,也不仅包括可直观的,还包括任何可思想的东西。(17)

表面上看,弗雷格对逻辑真理普遍性的这种强调会导致他不得不接受前述逻辑是形式的立场。一个对任何对象都成立的真理,不就是那个在任何解释下都真的形式语句吗?难道不是越是普遍的也越是空洞的,而最为普遍的命题最终会抽掉知识的任何对象吗?也许正是由于这个原因,逻辑是形式的这一观念才如此深入人心。因为所有人都不会否认逻辑学是最为普遍的科学,可如果普遍性蕴含着逻辑必须脱离任何对象,那逻辑似乎就必然是形式的。

但正如麦克法兰所论证的,也是我们所支持的,这种蕴涵必须预设某些哲学立场才能成立。对于康德来说普遍性是逻辑的根本特征,而这个特征加上康德哲学的一些根本预设,必然使康德把逻辑看作脱离任何对象的纯形式。麦克法兰的论证本身十分精致,但主要的依据是以上引文中所表述的,普遍逻辑必须抽掉思想与感性之间的任何联系,以及任何对象都只能通过感性直观被给予我们:

我们一切知性概念的客观运用的条件仅仅是对象借以被给予我们的那种感性直观的方式,并且如果我们抽掉这种方式,则那些知性概念就完全不具有与某个客体的任何关系了。(A286/B342)

这两者一起,使康德必须接受普遍的逻辑(不因某一特殊对象而改变)必然也是形式的(即无认识内容的)。(18)

虽然麦克法兰没有提到,但这个论证显然也适用于经验主义者,而且论证过程也会更为简单。

假设经验论者也接受“逻辑是普遍的”这个论题,那他一定会接受:

如果S是一个逻辑语句,则S的真不取决于任何一个具体的经验事实。(5)

否则S就不会是普遍的。同时,对于经验论者来说,一个语句有语义内容,当且仅当它描述了经验世界。(6)

语句S描述经验世界当且仅当S陈述了一个具体的经验事实(或它的反面)。(7)

分享到:
  • 欢迎,   已有0条评论
最新评论

学习网首页
思想理论
资    政
学习中国
党史党建
企业天地
科学技术
海外风采
综合专题
理论百科
干部论坛